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ABSTRACT

Given the network of satellite and aircraft observations around the globe, do additional in situ observations

impact analyses within a global forecast system? Despite the dense observational network at many levels in

the tropical troposphere, assimilating additional sounding observations taken in the eastern tropical Pacific

Ocean during the 2016 El Niño Rapid Response (ENRR) locally improves wind, temperature, and humidity

6-h forecasts using a modern assimilation system. Fields from a 50-km reanalysis that assimilates all available

observations, including those taken during the ENRR, are compared with those from an otherwise-identical

reanalysis that denies all ENRR observations. These observations reveal a bias in the 200-hPa divergence of

the assimilating model during a strong El Niño. While the existing observational network partially corrects

this bias, the ENRR observations provide a stronger mean correction in the analysis. Significant improve-

ments in the mean-square fit of the first-guess fields to the assimilated ENRR observations demonstrate that

they are valuable within the existing network. The effects of the ENRRobservations are pronounced in levels

of the troposphere that are sparsely observed, particularly 500–800 hPa. Assimilating ENRRobservations has

mixed effects on themean-square differencewith nearby non-ENRRobservations. Using a similar system but

with a higher-resolution forecast model yields comparable results to the lower-resolution system. These

findings imply a limited improvement in large-scale forecast variability from additional in situ observations,

but significant improvements in local 6-h forecasts.

1. Introduction

The El Niño–Southern Oscillation (ENSO) is a cou-

pled ocean–atmosphere phenomenon that has global

climatic effects in addition to the regional effects on the

tropical Pacific Ocean, where it originates (Ropelewski

and Halpert 1987; Halpert and Ropelewski 1992;

Neelin et al. 1998; Trenberth et al. 1998; Barsugli and

Sardeshmukh 2002;McPhaden et al. 2006; Sardeshmukh

et al. 2000; Compo et al. 2001). Understanding and

forecasting atmospheric anomalies associated with
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ENSO are of particular importance as these can be high-

impact and extreme weather and climate events (Kiladis

and Diaz 1989; Glantz 2001). While onboard observa-

tion campaigns have targeted the tropical Pacific Ocean

during El Niños (Kashino et al. 2009), prior to 2015, no

field campaigns had been organized to take atmospheric

observations in the tropical Pacific during an El Niño.
By mid-2015, forecasts predicted a strong El Niño for

the 2015/16 winter (L’Heureux et al. 2017), providing

the National Oceanic and Atmospheric Administration

(NOAA) the opportunity to initiate a campaign to col-

lect observations in the tropical Pacific Ocean during

this event. NOAA’s El Niño Rapid Response (ENRR)

project undertook the first field campaign to take at-

mospheric observations in this region during an El Niño
(Dole et al. 2018).

Although the existing wind observation network is

dense in the tropics near the surface and in the upper

troposphere, there is a dearth of observations at other

levels, particularly over the Pacific Ocean (orange and

teal dots in Fig. 1). While aircraft measure winds and

satellites provide them via atmospheric motion vectors

(AMVs; Velden et al. 1997), the in situ observation

networks of humidity (Fig. 2) and temperature (not

shown) are even sparser. The ENRR campaign sought

to fill this void and observe the strong El Niño as it

was under way. The campaign was successfully executed

and many observations were taken from land, sea, and

air platforms in early 2016; see magenta dots in Figs. 1

and 2 (Dole et al. 2018; Hartten et al. 2018a, b). These

observations were transmitted to the Global Telecom-

munications System and assimilated into operational

weather forecasting systems.

A summary of wind observations taken in the ENRR

campaign period from 22 January to 7 March 2016 is

provided in Table 1. Region A is shown in Fig. 3. Note

that there are more ENRR observations than observa-

tions taken in Region A because the ship and aircraft

released radiosondes and dropsondes, respectively,

along their routes from the United States to the tropical

Pacific Ocean.

To systematically study the effect of these observa-

tions on analyses and short-term forecasts from the

Global Forecast System (GFS) of the NOAA/National

Centers for Environmental Prediction (NCEP), a suite

of ‘‘reanalysis’’ datasets was generated for the 3 months

spanning the ENRR campaign period. The ‘‘control’’

reanalysis assimilated all observations, including the

FIG. 1. Maps of meridional wind observations assimilated into the NCEP operational GFS between 22 Jan and 7

Mar 2016 at the indicated levels (308S–308N only). Orange points represent non-ENRR radiosondes, and magenta

shows ENRR observations. Teal points represent all remaining observations, including aircraft observations

and AMVs.
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ENRR observations, while the ‘‘denial’’ reanalysis was

generated identically to, and in parallel to, the control

experiment except that it never assimilated any ENRR

observations.

Data-denial experiments, or ‘‘observing system ex-

periments,’’ are commonly used to determine observa-

tion impact, by either removing part of the current

observational network from a reanalysis or by adding

targeted observations from field campaigns (Kelly et al.

2007; Gelaro and Zhu 2009). Most studies are limited to

the extratropics (Bouttier and Kelly 2001; Benjamin

et al. 2004; Anwender et al. 2012; Hamill et al. 2013;

Majumdar et al. 2013; Romine et al. 2016), and those

that target the tropics are generally focused on fore-

casting tropical cyclones and typhoons (Harnisch and

Weissmann 2010; Torn 2014). Langland (2005) and

Majumdar (2016) provide reviews of recent targeted

observation campaigns, including during the World

Meteorological Organization/World Weather Research

Programme’s The Observing System Research and

Predictability Experiment (THORPEX; Gelaro et al.

2010), and the associated observation impact studies. In

general, the influence of targeted observations is posi-

tive but often very small, particularly with modern data

assimilation systems and dense observational networks.

As there have been no other atmospheric field cam-

paigns targeting the deep tropics during an El Niño, it
is not known whether these past results apply to such

a situation.

Here, two sets of data-denial experiments at different

resolutions were conducted to determine the impact of

the ENRR observations. Results from these experi-

ments demonstrate that the ENRR observations have a

significant impact on the analysis fields, particularly

meridional wind at 200 hPa, suggesting that the existing

observational network is not dense enough in this re-

gion to make the ENRR observations redundant. The

6-hourly background fields were also significantly im-

proved when ENRR observations were assimilated. The

results further suggest that the additional observations

had small effects on the assimilation of nearby AMVs,

and almost no effect on the fit to other nearby non-

ENRR observations.

The paper is organized as follows. Section 2 describes

the setup for the data-denial experiments, including

an overview of the observations during the ENRR

campaign. Section 3 describes the regional effects of

the ENRR observations on GFS analyses of 200-hPa

TABLE 1. Total approximate number of wind observations

(in thousands of observations) throughout the atmosphere over the

6-week research period 22 Jan–7 Mar 2016.

Platform Global Region A ENRR

Rawinsonde 3358 5.4 8.5

Dropsonde 22.5 17 21

Pibal 189 0 0

Wind profiler 41.4 0 0

Aircraft 22 039 9.8 0

Satellite wind 27 606 2255 0

Surface marine 1143 20.5 0

Scatterometer 1553 62.3 0

Total 55 951.9 2370 29.5

FIG. 2. Maps of in situ specific humidity observations assimilated into the NCEP operational weather forecast

system between 22 Jan and 7 Mar 2016 at the indicated levels (308S–308N only). Orange points represent non-

ENRR radiosondes and magenta shows ENRR observations. Teal points represent all remaining observations.

FIG. 3. Map of ‘‘deep tropics’’ flights (gray lines) with regions la-

beled A–D; see text for details.
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meridional wind. Section 4 describes local effects of

these observations on short-term forecasts and analyses

of wind, humidity, and temperature. Comparisons to

non-ENRR observations, including in situ observations

and measurements from satellites and aircraft, are

given in section 5. A summary of the same perfor-

mance metrics on the second set of experiments with

a higher-resolution model is discussed in section 6. Fi-

nally, section 7 includes discussion and conclusions.

2. Data-denial experiments

Two sets of two experiments were completed: low-

resolution (‘‘low-res’’) experiments with and without

the ENRR sounding observations assimilated, and high-

resolution (‘‘high-res’’) experiments with and without

the ENRR sounding observations (hereafter, ENRR

observations). All experiments used the NCEP GFS

version Q3FY16 and assimilated observations via the

hybrid four-dimensional ensemble variational (4DEnVar)

algorithm (Kleist and Ide 2015) with an ensemble of 80

members. The low-res experiments were conducted

at a resolution of T254, or about 50 km, and the high-

res experiments utilized an ensemble at resolution

T574 (about 34 km) with a separate control member at

a resolution of T1534 (about 13 km). In all cases, the

vertical resolution consisted of 64 vertical levels. Note

that the resolution of the GFS that was operational

during the ENRR campaign is the same as that of the

high-res experiments (T574 ensemble/T1534 control),

though the version of the GFS used in the experiments

below is newer than the version that was operational

during the campaign.

The 4DEnVar algorithm consists of forecasting an

ensemble of model states (the ‘‘background’’ or ‘‘first-

guess’’ ensemble), in addition to a control member.

The control member is then updated using the hy-

brid gridpoint statistical interpolation (GSI) analysis

scheme (Hu et al. 2016; Wang et al. 2013), which uses a

weighted combination of the ensemble background

covariance and a static background covariance. In this

implementation, the ensemble is updated through an

ensemble Kalman filter (EnKF) analysis step, and then

recentered around the control member, resulting in the

‘‘analysis’’ ensemble.

After the analysis is calculated, a smoothing treatment

is applied to prevent gravity wave noise from dominat-

ing the short-term evolution of the forecast following

this update. Note that the low-res and high-res experi-

ments use different treatments. The low-res experiments

use a 4D incremental analysis update (IAU; Bloom et al.

1996; Lei and Whitaker 2016), not implemented opera-

tionally at the time of the experiments. In the IAU,

observations are assimilated in a 6-h time window to

calculate an ‘‘initial’’ analysis, as usual; instead of

forecasting from these initial analysis fields, though,

the ‘‘final’’ analysis fields are obtained by applying the

initial analysis increments as a forcing to the back-

ground ensemble in intermediate steps. In other

words, instead of applying the increments as a discrete

jump at each analysis time, they are interpolated in

time and applied within the model, between assimila-

tion times. Note that, for the low-res results included

here, the increments shown are from the initial anal-

ysis fields, before IAU was applied; results are quali-

tatively similar but weaker for the final fields, after the

IAU is applied (see the appendix). Finally, in the

version of the 4DEnVar used for the low-res experi-

ments, the control member is set equal to the ensemble

mean, so there is no ‘‘recentering’’ of the ensemble

around a separate control member. In contrast, the

operational 4DEnVar, and the high-res experiments

described below, use a separate, higher-resolution

control member.

The high-res experiments used the version of the hy-

brid 4DEnVar that became operational on 11May 2016.

This is very similar to the algorithm used in the low-res

experiments described above, but without 4DIAU. In-

stead, the NCEP operational digital filter was applied

to the background fields to prevent numerical instabil-

ities from forming (Lynch and Huang 1992; Huang and

Lynch 1993).

ENRR observation platforms include dropsondes

(Vaisala RS-92) from 22 flights of the NOAAGulfstream-

IV aircraft (hereafter, G-IV) and 6 coordinated flights of

Air Force C130s (NOAA 2018; UCAR/NCAR–Earth

Observing Laboratory 1994). ENRR observations also

include radiosondes (Vaisala RS92-SGP) launched from

the NOAA ship Ronald H. Brown (RHB; Cox et al.

2017) and a field campaign station on Kiritimati Island

(Dole et al. 2018; Hartten et al. 2018a, b, 2017). (Ob-

servation data from this campaign are available at https://

www.esrl.noaa.gov/psd/enso/rapid_response/data_pub/.)

The aircraft component of the campaign began with a

G-IV flight on 22 January 2016, and concluded on

7 March 2016. Ten of these flights are designated ‘‘deep

tropics flights’’ that flew into the region 28S–108N, 1508–
1658W. See Fig. 3 for a map of the approximate flight

paths for these 10 flights, as well as regions A–D con-

sidered in section 5. The deep tropics flight dates are 21,

25, and 26 January; 2, 12, 15, 26, 27, and 29 February; and

1 March 2016. Note that this subset is similar, but not

identical to, the ‘‘convective enclosure’’ flights defined

in Dole et al. (2018); see Fig. 1 of that work. Prior in-

vestigations (not shown) suggest that results shown here

(Figs. 5 and 14) would not change significantly using the
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convective enclosure flights. Observations from these

flights were generally assimilated at 0000 UTC on the

day following the local flight date; that is, most obser-

vations taken on the 21 January flight were assimilated

at 0000 UTC 22 January. The Ronald H. Brown sailed

from 17 February to 17 March 2016, launching radio-

sondes every 3–4h. Radiosondes were also launched

from Kiritimati Island every 12h; they were assimilated

from 16 February 2016 through the end of the campaign

on 31March 2016.Magenta points on Fig. 1 represent all

ENRR observations of wind within the period from

14 February through 7 March 2016; this includes all

radiosondes launched from Kiritimati Island and the

Ronald H. Brown and all dropsondes released from all

ENRR flights in that period. These instruments took

measurements of pressure, wind, temperature, and hu-

midity. See Dole et al. (2018) for a complete description

of the ENRR observations.

To rigorously determine the effects of the ENRR

observations on analyses and short-term forecasts within

the data assimilation system, two experiments were run

in each of the setups described above: first, a retro-

spective analysis covering the entire campaign period

(20 January–31 March 2016) that assimilates all obser-

vations considered in the real-time operational fore-

casts, including the ENRR observations (the control

experiment); and second, an experiment identical to the

control but that never assimilates the ENRR observa-

tions (the denial experiment), run in parallel to the

control. Surface-level observations from the ENRR

platforms were not denied, since the Ronald H. Brown

and Kiritimati Island take surface observations in nor-

mal (non-ENRR campaign) conditions. These surface-

level observations account for about 0.3% of the total

number of ENRR observations. Any differences be-

tween the control and denial experiments should theo-

retically be due solely to the assimilation of the ENRR

observations. In practice though, the model includes a

version of the stochastically perturbed parameterization

tendencies scheme with perturbed boundary layer hu-

midity (SPPT/SHUM; Palmer et al. 2009; Tompkins and

Berner 2008); see Wang et al. (2019) for a description

of the implementation of the scheme in this model.

Thus, some differences between the control and denial

experiments will be due to different realizations of the

stochastic perturbations. The spectral forecast model

may create nonlocal differences between two realiza-

tions as well.

Note that the impact of additional observations

within a data assimilation system will depend on the

uncertainties in the background field and in the ob-

servations themselves. If the background uncer-

tainty is relatively low and the error of the additional

observations is relatively high, then the assimilation

system will effectively ignore the observations. In con-

trast, if there is greater background uncertainty and the

new observations are relatively accurate, then even a

small amount of new observations can make an impact.

In the experiments examined here, the observation er-

rors and background uncertainty both vary significantly

in time and space. Observation errors depend on plat-

form, variable observed, and vertical level (Hu et al.

2016; Bormann et al. 2003). For example, dropsonde

wind errors vary from 2.4m s21 at the surface, increasing

to 3.4m s21 at 300 hPa, and decreasing again to 2.7m s21

at 50 hPa and above. Satellite wind errors also vary

among satellites themselves: EUMETSAT observations

from Meteosat have errors prescribed as 3.8m s21 at

the surface, increasing to 7ms21 at 250 hPa and above;

NESDIS observations from GOES are prescribed as

7.6m s21 at the surface, increasing to 14ms21 at 250 hPa

and above. Additionally, these experiments use a hybrid

parameter value of b 5 0.125, where b 5 0 implies a

background covariance determined entirely by the en-

semble, and b 5 1 yields an entirely static background

covariance. Therefore, the background uncertainty is

mostly determined by the prior ensemble covariance,

and so it will also vary based on variable, spatiotem-

poral location, and dynamical situation. (See Kleist

and Ide (2015) for a discussion of how the hybrid in-

crements depend on the covariances.) As an example,

the first-guess ensemble spread at Kiritimati Island for

meridional wind during the campaign period varies

from 0.5 to 2m s21 at surface levels, and from 2 to

5m s21 at 200 hPa and above; these numbers depend

on synoptic conditions and time of day as well. The

results from the data-denial experiments studied here

will demonstrate whether the assimilation system

deemed the ENRR observations accurate and useful

enough, relative to the background uncertainty, to

make an impact within the existing observation net-

work. In all quantities considered here, the results are

tested against the null hypothesis that they do not

make an impact.

3. Regional effects of observations

El Niño is generally characterized by increased di-

vergence in the upper troposphere above the eastern

equatorial Pacific Ocean, which should manifest itself in

the 200-hPa meridional wind field (e.g., Trenberth et al.

1998). Upper-level divergent outflow is critical for gen-

erating El Niño’s global extratropical-tropical tele-

connections (e.g., Sardeshmukh and Hoskins 1988). For

this feature, the operational GFS forecast was system-

atically weaker than observations in this time period
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[Fig. 11 of Dole et al. (2018)]. Thus, when observations

targeted to this area are assimilated, we expect to

see greater divergence aloft if the newer version of

the GFS employed here has the same deficiencies as

the version of the GFS that was operational during the

ENRR campaign. Figures 4 and 5 show the time-

averaged increments (differences between the analy-

sis and background) of the 200-hPa meridional wind

field. In both the control and denial experiments over

the 22 January–7 March 2016 time period (Fig. 4),

there is a large-scale pattern of outflow north of the

equator (particularly in the region 28S–158N, 1508–
1708W). Figure 4c shows the difference between the

average control and denial increments over this period.

Recall that these experiments use a spectral model

with stochastic perturbations; this will yield nonzero

differences between the control and denial increments

that are unrelated to the ENRR observations. To de-

termine whether the differences between the control

and denial increments are significant, a Kolmogorov–

Smirnov (DKS) test (Massey 1951) is calculated, and

cross hatching is included on the control-denial dif-

ference figures where the significance is at least 95%.

Comparisons between the control experiment and

the denial experiment for 22 January–7 March 2016

suggest that assimilating ENRR observations may lead

to stronger outflow from the deep tropics area than

when ENRR observations are not assimilated, but the

differences between the control and denial fields over

this period are small and not statistically significant at

the 95% level (as shown by the lack of cross hatching

on Fig. 4c).

The effect of assimilating ENRR observations on the

strengthening of the outflow is more apparent and sig-

nificant on days when flights entered the deep tropics

area: Fig. 5 is similar to Fig. 4, but restricted to ‘‘deep

tropics’’ flight days. The difference map (Fig. 5c) shows

the strongest signals in the deep tropics box. This dif-

ference is not significant at the 95% level according to

a DKS test (see the lack of cross hatching on Fig. 5c),

but there are several grid points in the deep tropics box

for which it is statistically significant at the 90% level

FIG. 4. Assimilation increments of 200-hPa meridional wind averaged over 22 Jan–7 Mar, valid at 0000 UTC: (a) low-res control ex-

periment, (b) denial experiment, and (c) the difference. The black box emphasizes the deep tropics region (see text for details).

FIG. 5. Assimilation increments of 200-hPa meridional wind averaged over days with flights into the ‘‘deep tropics,’’ valid at 0000 UTC:

(a) low-res control experiment, (b) denial experiment, and (c) the difference between the two. In (a),(b), cross hatching represents

significant differences from respective nonflight days (95% level) based on a Kolmogorov–Smirnov test. In (c), the lack of cross hatching

demonstrates the lack of significant differences from zero at the 95% level. The black box emphasizes the deep tropics region.
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(not shown). Since this is based on only 10 pairs of data,

the significance level is not very strong. The 200-hPa

divergence increments (Fig. 6) show that the stronger

200-hPa outflow is indeed associated with upper-level

divergence in the deep tropics area. Several of the

largest positive values (dark red) in the deep tropics

box of Fig. 6c are significant at the 90% level, with some

grid points above the 95% level.

As previously stated, these figures are calculated from

the initial analysis fields, before the IAU is applied in

that time window. When the final (post-IAU forcing)

analysis fields are used, the results are qualitatively

similar, but the magnitudes of the increments are di-

minished by about 60%–80% (Fig. A1). This suggests

that the final analysis fields are closer to the forecast

fields than the initial analysis used to calculate the IAU

forcing. In principle, this could imply a smaller impact of

any observation on the final analysis when IAU is uti-

lized. Deeper investigations into the IAU algorithm and

its effects on data assimilation increments, particularly

in the context of individual weather events, will be ex-

plored in future work.

To investigate whether the stronger outflow in the

upper level, which indicates stronger convergence below,

is associated with improved estimates of precipitation,

the control and denial fields are compared with pre-

cipitation estimates from the NASA Global Pre-

cipitation Measurement (GPM) Core Observatory

satellite data. These data used the Tropical Rainfall

Measuring Mission (TRMM) 3B42 algorithm, and are

provided at a resolution of 0.18. Figure 7 illustrates the

RMS differences between the precipitation rates from

the given experiment and from the GPM (both in-

terpolated to a 0.258 grid); the mean is taken in time for

0000–0300 UTC on deep tropics flight days. Figure 7c

shows the difference field (denial RMSD subtracted

from the control RMSD); the lack of cross hatching

indicates that there were no regions with a statistically

significant pattern above the 80% level. The spatial

average of the control (denial) RMSD over regions C

and D (Fig. 3) is 0.94mmh21 (0.97mmh21). While not

significant, the control RMSD is smaller than the denial

RMSD. The consistent increment of the analyzed upper-

level outflow relative to the background fields by the

FIG. 6. Assimilation increments of 200-hPa divergence averaged over days with flights into the ‘‘deep tropics,’’ valid at 0000 UTC:

(a) low-res control experiment, (b) denial experiment, and (c) the difference between the two. The black box emphasizes the deep

tropics region.

FIG. 7. Precipitation rate RMS differences from the NASA GPM dataset for (a) the low-res control and (b) denial experiments,

averaged over 0000–0300UTCon deep tropics flight days. (c) The difference between (a) and (b); note the different color scales. The black

box emphasizes the deep tropics region.
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existing observational network (Figs. 4 and 5), the

strengthening of this increment by the research-quality

ENRR observations, and the slight (though insignificant)

improvement in local precipitation estimates suggest an

error in which the model does not produce upper-level

outflow in this region that is as strong as reality.

4. Local effects of observations

Results comparing the control and denial experiments

demonstrate that the ENRR observations improved

the 6-h background fields and significantly impacted the

resulting analyses at the ENRR radiosonde observa-

tion locations. Let zcontrol 5
n
�t2time[xob(t)2xmodel(t)]

2
o
=n

�t2time[xob(t)2xob]
2
o

be the mean squared difference

(MSD) between the observations xob and the back-

ground or analysis field xmodel from the control run

interpolated to the observation time and location,

normalized by the variance of the observations, for x5
specific humidity, temperature, zonal wind, and me-

ridional wind, where xob denotes the mean of the ob-

servations. Similarly, define zdenial as the normalized

mean squared difference between the observations and

the fields from the denial experiment. Figure 8 shows

the vertical profiles of the root-mean-squared (RMS)

differences (zcontrol)
1/2 (blue) and (zdenial)

1/2 (green) for

the background (solid) and analysis (dashed) fields.

The mean is taken over ENRR radiosonde platforms

(Kiritimati Island and RHB) and in time (14 February–

7 March 2016, all hours). While the dashed curves are

not independent of the ENRR observations (since the

control analysis fields assimilated them), we emphasize

that the solid curves are independent of the ENRR

observations used within the comparison (since the

first-guess fields are compared to the ENRR observa-

tions that have not yet been assimilated). Results in-

cluding ENRR dropsondes, in addition to radiosondes,

are qualitatively similar (not shown). Note that this

calculation covers a shorter time period than the 22

January–7 March 2016 period used in earlier sections,

because the Kiritimati Island observations were not

assimilated until after 14 February 2016.

To determine whether the differences between the

control and denial experiments are significant, Fig. 9

FIG. 8. Normalized vertical profiles of the low-res control RMSdifferences [(zcontrol)
1/2; blue] and the denial RMS

differences [(zdenial)
1/2; green] for theKiritimati Island andRonBrownENRRobservations and background (solid)

or analysis (dashed) of (a) specific humidity, (b) temperature, (c) zonal wind, and (d) meridional wind, interpolated

to the ENRR observation location for all times during 14 Feb–7 Mar.
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shows the vertical profiles of the differences (zcontrol 2
zdenial) for the low-res experiment with 95% confidence

intervals. Profiles to the left of the zero line demonstrate

a positive impact of assimilating ENRR observations.

Shading represents 95% confidence intervals deter-

mined by a paired block bootstrap technique (Hamill

1999). This bootstrap consists of drawing 1000 samples

with replacement from the original set of squared dif-

ferences between the observation and the interpolated

background (analysis) field, pairing the control and de-

nial experiments. An empirical distribution of the sam-

ple means is then constructed, from which confidence

intervals can be determined. The resampling is con-

ducted in 6-h blocks of time, under the assumption that

observations 6 h apart are reasonably independent while

observations within the same 6-h window are not as-

sumed to be independent.

It is perhaps unsurprising that the analysis fields are

pulled closer to the ENRR observations in the control

experiment (when they were assimilated), relative to

the denial experiment (when they were not), as shown

by the dashed curves in Fig. 9. This implies that the

routine observing system, without ENRR observa-

tions, did not produce analyses that were as close to the

ENRR observations as they could have been with a

more complete observing system. In other words, the

ENRR observations were not redundant in the exist-

ing observational network. Demonstrating their ben-

eficial impact, assimilating ENRR observations brings

the first-guess fields closer to the ENRR observations

(solid curves in Fig. 9) for all variables considered at

nearly all levels. Exceptions include surface-level

specific humidity and zonal wind, but these differ-

ences are statistically insignificant. The background

fields are consistently, and often significantly, closer

to the ENRR radiosonde observations in the low-

res control experiment than in the denial experiment.

The beneficial impacts of the observations are par-

ticularly notable in the middle troposphere: the dif-

ferences between the control and denial analysis fit

to the observations is largest from about 500 to

800 hPa in all variables, where the observation density

is low (Figs. 1, 2). Particularly notable in this measure

is how much the assimilation of ENRR observations

FIG. 9. Normalized vertical profiles of the difference between the low-res control MSD (zcontrol) and the denial

MSD (zdenial) for the Kiritimati Island and Ron Brown ENRR observations and background (solid) or analysis

(dashed) of (a) specific humidity, (b) temperature, (c) zonal wind, and (d) meridional wind interpolated to the

ENRR observation location for all times during 14 Feb–7 Mar. Shading represents 95% confidence intervals de-

rived from a paired block bootstrap.
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significantly improved zonal wind background fields

at these levels.

5. Comparisons to other observations

Figure 5 suggests that the ENRR observations had an

impact on the background and analysis fields of 200-hPa

meridional wind within a region of the deep tropics. To

determine the effect of the ENRRobservations on other

variables in that region, the analysis and first-guess fields

of temperature, humidity, and winds are compared with

non-ENRR observations in a region of the deep tropical

Pacific Ocean defined by 28S–198N, 1808–1208W; see

region A of Fig. 3 (magenta box).

Despite the significant beneficial effects that the

ENRR observations have on the background and anal-

ysis fields interpolated to their observation times and

locations (e.g., Fig. 9), the effects aremuch weaker when

assessed using other observations, as illustrated in

Fig. 10. These vertical profiles show the normalized

difference between the low-res control MSD (zcontrol)

and the denial MSD (zdenial) assessed using only non-

ENRR observations, including in situ observations as

well as aircraft and satellite winds, within this region and

that were assimilated in all experiments. First guess and

analysis fields have been interpolated to each observa-

tion time and location. The MSD’s from the control

experiment that assimilated the ENRR observations

are not consistently smaller than those from the denial

experiment, and these differences are generally within

the 95% confidence intervals. The exception is 350–

450-hPa zonal wind in which the control fields are sig-

nificantly closer to the observations than the denial fields

[negative (zcontrol 2 zdenial)]. Note also that for 200–

300-hPa meridional wind, the control fields are slightly

but significantly farther from the observations than the

denial fields [positive (zcontrol 2 zdenial)]. It is important

to note that all of the differences in Fig. 10 are about 1/10

the magnitude than the differences in Fig. 9, indicating

that the analysis and first guess fits to the non-ENRR

observations are virtually unchanged by the assimilation

of ENRR observations.

Over the eastern tropical Pacific Ocean, there are

very few in situ wind observations (e.g., Fig. 1); nearly

all of the non-ENRR wind observations in Fig. 10

are from satellites and aircraft. To determine whether

FIG. 10. Normalized vertical profiles of the difference between the low-res control MSD (zcontrol) and the denial

MSD (zdenial) for non-ENRR observations in region A and background (solid) or analysis (dashed) of (a) specific

humidity, (b) temperature, (c) zonal wind, and (d) meridional wind interpolated to the observation location for all

times during 14 Feb–7 Mar. Shading represents 95% confidence intervals derived from a paired block bootstrap.
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assimilating the additional in situ observations from the

ENRR campaign improved the fit of the first guess and

analysis wind fields specifically to atmospheric motion

vector (AMV) observations from satellites, these fields

are compared to the AMV observations in three se-

lected regions of the tropical Pacific Ocean. Region B

(gold dashed box of Fig. 3) is defined as the region 28S–
198N by 1708–1408W. The deep tropics region is then

split into regions C and D (blue dotted and green dash–

dotted boxes of Fig. 3, respectively): 28S–48N by 1658–
1508Wand 48–108N by 1658–1508W.Differences are first

considered in region B for the longer time period of 14

February–7 March, before narrowing the time period to

0000 UTC on deep tropics flight days, and finally con-

sidering regions C and D on deep tropics flight days

(Figs. 11 and 12).

Similar to the results of Fig. 10, control and denial

differences with AMVs are inconsistent and generally

insignificant. In particular, the mean squared differences

between observations and fields at 200 hPa are not

consistently smaller in the control experiments than in

the denial experiments (Fig. 11), suggesting that the

large increments in the deep tropics box of Fig. 5 may

not be drawing the fields closer to the AMV observa-

tions in a mean-square sense.

Investigations into the mean biases y5
�
�t2time

[xob(t)2xmodel(t)]
�
=
n
�t2time[xob(t)2xob]

2
o1/2

are simi-

larly inconsistent, with few significant results (Fig. 12).

On deep tropics flight days, in region C (Fig. 12c),

the control background fields appear to be closer to the

AMV meridional wind observations than the denial

fields at all levels, while the control analysis fields are

farther away. In region D (Fig. 12d), the results are

mixed. Consistent with Fig. 5, results shown in Fig. 12d

suggest that both the control background and analysis

fields at 200 hPa are closer to the AMV observations in

this region. The largely insignificant and varying results

when comparing to AMV observations may be an effect

of their relatively large observation errors: the AMVs

have errors that are roughly twice as large as those from

radiosondes and dropsondes (AMV errors vary from 3.8

to 14m s21, while errors from in situ platforms vary from

1.4 to 3.4m s21), so the analysis field may not be ex-

pected to fit the AMV observations as well as it fits the

in situ observations. It is therefore difficult to conclude

whether the increments in Fig. 5 from the control ex-

periments result in analyses and background fields that

are closer to AMV observations.

6. High-res case results

Concurrent with the low-res experiments, a sepa-

rate set of high-res experiments was also conducted to

determine the impact of the ENRR observations on

an operational weather forecast system. As discussed

earlier, these high-res experiments were run with an

ensemble at a resolution of T574 and a control member

at a resolution of T1534, using the hybrid 4DEnVar that

FIG. 11. Normalized vertical profiles of the difference between the low-res control MSD (zcontrol) and the denial

MSD (zdenial) for AMV y-wind observations (a) within region B for all times during the 14 Feb–7 Mar period;

(b) within region B for ‘‘deep tropics’’ flight days, valid at 0000 UTC; (c) within region C for ‘‘deep tropics’’ flight

days, valid at 0000 UTC; and (d) within region D for ‘‘deep tropics’’ flight days, valid at 0000 UTC.
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was operational at the Environmental Modeling Cen-

ter in May 2016. These two sets of experiments (low-

res and high-res) are not intended to be directly

compared with one another, as there are several dif-

ferences between them apart from the resolution.

First, recall (section 2) that the low-res experiments

use a 4DIAU algorithm and do not recenter the en-

semble around a control member, while the high-res

experiments do not use the 4DIAU algorithm and

do recenter the ensemble around a control member.

Second, while both sets of ensembles (high-res and

low-res) use the SPPT stochastic perturbation on

precipitation, the high-res control member does not

stochastically perturb precipitation. Third, the low-res

experiments assimilated wind observations between

450 and 550 hPa from the deep-layer water vapor im-

ager on the Geostationary Operational Environmen-

tal Satellite-13 (GOES-13). These observations were

blacklisted operationally, and thus were unused in the

high-res experiment. An in-depth investigation in-

volving another set of data-denial experiments would

be needed to determine the impact of the GOES-13

observations; however, these data are no longer pro-

duced. They have been replaced by the deep-level

water vapor AMVs observed by the advanced baseline

imager on GOES-16, which have been assimilated

operationally since January 2018 (NOAA/EMC 2018).

Several other small differences in model configurations

exist between the low-res and high-res experiments,

including choice of land surface datasets and ozone

parameterizations.

However, the high-res control and high-res denial

experiments only differed in their assimilation or denial

of the ENRR observations, as in the low-res experi-

mental setup. Therefore, the results from the high-res

experiments can be used support the conclusions drawn

from the low-res experiments above, regarding the im-

pact of the ENRR observations. The high-res 200-hPa

meridional wind fields are similar to those from the re-

spective low-res experiments (see Figs. 13 and 14). In the

high-res experiments, the difference between the con-

trol and denial increments on deep tropics flight days

is more localized to the tropics than in the low-res ex-

periments (cf. Fig. 14c with Fig. 5c), and has less statis-

tical significance: the low-res differences in Fig. 5c are

significant at the 90% level (not shown), but the high-res

differences in Fig. 14c have no areas of statistical sig-

nificance at the 90% level.

The local effects of the ENRR observations on the

high-res experiments are also similar to the low-res re-

sults: the control MSD is smaller than the denial MSD

for most variables at most levels, though there is overall

less significance in these differences (Fig. 15). These

results suggest that an increased model resolution may

allow the assimilation system to use the existing obser-

vational network more effectively than the low-res case.

However, this could also be a result of the IAU: if the

high-res increments (without IAU) are larger than the

FIG. 12. Normalized vertical profiles of the difference between the low-res control bias (ycontrol) and the denial

bias (ydenial) for AMV y-wind observations (a) within region B for all times during the 14 Feb–7 Mar period;

(b) within region B for ‘‘deep tropics’’ flight days, valid at 0000 UTC; (c) within region C for ‘‘deep tropics’’ flight

days, valid at 0000 UTC; and (d) within region D for ‘‘deep tropics’’ flight days, valid at 0000 UTC.
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low-res increments post-IAU, this could lead to sub-

sequent forecasts from the high-res analysis fields being

closer to the observations. Because of the inconsis-

tencies in the two experimental designs, however, these

differences cannot for certain be attributed to the model

resolution or to the IAU, and further work is required to

rigorously determine the effects of each of these on the

GFS assimilation system. Comparisons to nearby non-

ENRR radiosonde observations and satellite wind data

are similar in the high-res case (not shown) to the low-

res case (Figs. 9–11): differences between the high-res

control and denial are inconsistent across variable and

vertical level.

7. Conclusions

Results from two sets of data-denial experiments

demonstrate the impacts of the ENRR field campaign

observations on the analysis and 6-h background fields

of temperature, specific humidity, and wind. First, as-

similating ENRR observations led to stronger outflow

associated with 200-hPa divergence from the deep

tropics region of the Pacific Ocean, particularly when

flights entered that area. The systematic increments of

200-hPa meridional wind seem to point to a model bias

in this region, as the background fields consistently

showed weaker outflow than the observations demon-

strated. Wang et al. (2019) suggest that this systematic

strengthening of upper-level outflow acts to strengthen

El Niño–related features in 7-day forecasts (their

Fig. 9b). This signal is consistent with earlier studies of

the effects of anomalous equatorial Pacific heat sources

(Ting and Sardeshmukh 1993).

Second, assimilating ENRR observations pulled the

analysis fields closer to the observations. While perhaps

unsurprising, this does suggest that these observations

were not redundant within the existing observation

network, despite the dense satellite and aircraft cover-

age of some variables throughout many levels of the

troposphere. Notably, the existing wind observation

network has gaps in the middle troposphere, where the

observations significantly affected the analyses.

Third, 6-h background fields show small but consistent

and significant differences in temperature, specific hu-

midity, and wind, suggesting that the ENRR observa-

tions improved the background fields locally. This is

consistent with the results of Wang et al. (2019), who

show significant impacts of the ENRR observations on

global, tropical, and hemispheric measures of 12–24 h

forecast skill in the same NCEP GFS model used here.

FIG. 13. Increments of 200-hPa meridional wind, as in Fig. 4, but for the high-res experiment.

FIG. 14. Increments of 200-hPa meridional wind, as in Fig. 5, but for the high-res experiment.
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This suggests that the localized impacts on the analysis

and 6-h background fields are communicated to those

regions over time. However, the authors also found that

the impacts of these observations are negligible past

forecast hour 24 (their Fig. 2), suggesting that the small

but significant impacts of the ENRR observations at up

to 24-h leads are lost for longer leads.

Despite these interesting results, the ENRR ob-

servations had mixed effects on the fit of the analysis

or background fields to nearby non-ENRR observa-

tions. The strong increments of 200-hPa meridional

wind caused by the ENRR observations correspond

to analyses that are closer (in a mean sense) to

AMV observations in a small region of the tropical

Pacific Ocean, suggesting that assimilating the ENRR

observations helped to correct a model bias in this

region. However, this result is not robust across dif-

ferent time periods and spatial regions, nor the sta-

tistic used, since the mean-squared differences do not

show consistent improvement when the ENRR ob-

servations are assimilated. Effects of the additional

ENRR observations on precipitation fields are simi-

larly insignificant.

Finally, results from a similar set of data-denial ex-

periments that used a higher-resolution forecast model

from an operational system support the conclusions

above. Despite several other differences in experimen-

tal design, the addition of ENRR observations within

the high-res system strengthens the increment of 200-hPa

divergence, improves the fit of background and analysis

fields to the ENRR observations, and has mixed effects

on the fit to nearby non-ENRRobservations, comparable

to the low-res experiments.

Overall, the ENRR campaign provided many addi-

tional useful observations over the tropical Pacific

Ocean during a major El Niño event. These observa-

tions had significant local effects on the output of the

assimilation system, but large-scale improvements from

them were limited. While additional independent ob-

servations can be helpful for validation, we suggest that

future observational field campaigns would benefit from

detailed prior knowledge of the impact of different types

of observations within the existing network, particularly

of satellite and aircraft observations. Other data-denial

experiments, in which the satellite or aircraft observing

networks are systematically degraded within an opera-

tional forecast and assimilation framework, would likely

shed more light on the impact of these observations. A

suite of such data-denial experiments would reveal the

relative impact of different types of observations, and

FIG. 15. Normalized vertical difference profiles, as in Fig. 9, but for the high-res experiments.
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provide a framework for determining where future ef-

forts should be focused.
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APPENDIX

Effect of Incremental Analysis Updates

The low-res experiments in this work use a 4D in-

cremental analysis update (4DIAU; Bloom et al. 1996;

Lei and Whitaker 2016); see section 2. Briefly, the tra-

ditional or ‘‘3DIAU’’ consists of applying each DA

increment as a constant forcing within the model,

between assimilation times. Since its introduction by

Bloom et al. (1996), this method has been widely im-

plemented in many different assimilation systems, with

demonstrations of its effects including damped un-

stable subspaces, decreased tendencies, reduced dis-

continuities, and smaller increments (Zhu et al. 2003;

Polavarapu et al. 2004; Zhang et al. 2015; Ha et al. 2017).

The 4DIAU, first discussed by Lorenc et al. (2015),

differs from the 3DIAU in that the increments are cal-

culated and applied over smaller windows of time

within each assimilation time step, whereas the 3DIAU

calculates one increment for each assimilation window.

The 4DIAU was implemented successfully within the

4DEnVar in the U.S. Global Forecast System, with

improvements over 3DIAU (Lei and Whitaker 2016).

It was also implemented within the 4DEnVar at En-

vironment and Climate Change Canada, where it was

shown to reduce spurious wave activity generated by

imbalances as compared to digital filtering (Buehner

et al. 2015).

In the low-res ENRR experiments, there is a differ-

ence in magnitude between the 200-hPa meridional

wind fields from the analysis increment (analysis minus

forecast) calculated before applying IAU and from the

increment calculated after the IAUwas applied (valid at

the same time). FigureA1 shows the increment of 200-hPa

meridional wind, averaged over the 10 deep tropics flight

days (0000 UTC), calculated using the pre-IAU analysis

(Fig. A1a) and the post-IAU analysis (Fig. A1b). Note

that the IAU window spans 6h from (analysis time mi-

nus 3h) to (analysis time plus 3h), so the post-IAU fields

at 0000 UTC have had 3h of IAU forcing, not the full

6 h. Figure A1c shows the difference between the mag-

nitudes (absolute value) of the post-IAU and pre-IAU

analysis increments, normalized by the pre-IAU in-

crement magnitude. The difference plot demonstrates

that the post-IAU increment is often 60%–80% weaker

than the pre-IAU increment. (The dark red areas cor-

respond to regions where both increments are nearly 0.)

Note that differences may be especially large for a field

like 200-hPa meridional wind and other fields related

to divergence, where the instantaneous increment may

be inconsistent with the model’s hydrologic cycle in the

tropics. Improvements in the model’s physics could

FIG. A1. Average 200-hPameridional wind increments calculated using (a) the initial pre-IAU analysis; (b) the final post-IAU analysis;

and (c) the normalized difference of the magnitude of the two (see text for details). The average is taken over deep tropics flight days,

0000 UTC. Note the different color scales used for (a) and (b).
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result in a decrease in this mis-match; investigations into

this question are outside the scope of this paper.

Future work is planned to investigate the effects of the

4DIAU in more detail. Questions include: how the IAU

affects forecasts on longer time scales (e.g., 6–12 h after

the IAU forcing is turned off); the effect of the IAU on

other variables; whether and how differences between

pre and post IAU fields can be used to diagnose model

error; and average differences between increments from

digital filtering (without IAU), from the final IAUfields,

and from the pre-IAU fields.
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